智能热水器
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

1470 lines
49 KiB

/**
******************************************************************************
* @file stm32f10x_rcc.c
* @author MCD Application Team
* @version V3.5.0
* @date 11-March-2011
* @brief This file provides all the RCC firmware functions.
******************************************************************************
* @attention
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* <h2><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h2>
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_rcc.h"
/** @addtogroup STM32F10x_StdPeriph_Driver
* @{
*/
/** @defgroup RCC
* @brief RCC driver modules
* @{
*/
/** @defgroup RCC_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @defgroup RCC_Private_Defines
* @{
*/
/* ------------ RCC registers bit address in the alias region ----------- */
#define RCC_OFFSET (RCC_BASE - PERIPH_BASE)
/* --- CR Register ---*/
/* Alias word address of HSION bit */
#define CR_OFFSET (RCC_OFFSET + 0x00)
#define HSION_BitNumber 0x00
#define CR_HSION_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (HSION_BitNumber * 4))
/* Alias word address of PLLON bit */
#define PLLON_BitNumber 0x18
#define CR_PLLON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLLON_BitNumber * 4))
#ifdef STM32F10X_CL
/* Alias word address of PLL2ON bit */
#define PLL2ON_BitNumber 0x1A
#define CR_PLL2ON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLL2ON_BitNumber * 4))
/* Alias word address of PLL3ON bit */
#define PLL3ON_BitNumber 0x1C
#define CR_PLL3ON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLL3ON_BitNumber * 4))
#endif /* STM32F10X_CL */
/* Alias word address of CSSON bit */
#define CSSON_BitNumber 0x13
#define CR_CSSON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (CSSON_BitNumber * 4))
/* --- CFGR Register ---*/
/* Alias word address of USBPRE bit */
#define CFGR_OFFSET (RCC_OFFSET + 0x04)
#ifndef STM32F10X_CL
#define USBPRE_BitNumber 0x16
#define CFGR_USBPRE_BB (PERIPH_BB_BASE + (CFGR_OFFSET * 32) + (USBPRE_BitNumber * 4))
#else
#define OTGFSPRE_BitNumber 0x16
#define CFGR_OTGFSPRE_BB (PERIPH_BB_BASE + (CFGR_OFFSET * 32) + (OTGFSPRE_BitNumber * 4))
#endif /* STM32F10X_CL */
/* --- BDCR Register ---*/
/* Alias word address of RTCEN bit */
#define BDCR_OFFSET (RCC_OFFSET + 0x20)
#define RTCEN_BitNumber 0x0F
#define BDCR_RTCEN_BB (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (RTCEN_BitNumber * 4))
/* Alias word address of BDRST bit */
#define BDRST_BitNumber 0x10
#define BDCR_BDRST_BB (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (BDRST_BitNumber * 4))
/* --- CSR Register ---*/
/* Alias word address of LSION bit */
#define CSR_OFFSET (RCC_OFFSET + 0x24)
#define LSION_BitNumber 0x00
#define CSR_LSION_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (LSION_BitNumber * 4))
#ifdef STM32F10X_CL
/* --- CFGR2 Register ---*/
/* Alias word address of I2S2SRC bit */
#define CFGR2_OFFSET (RCC_OFFSET + 0x2C)
#define I2S2SRC_BitNumber 0x11
#define CFGR2_I2S2SRC_BB (PERIPH_BB_BASE + (CFGR2_OFFSET * 32) + (I2S2SRC_BitNumber * 4))
/* Alias word address of I2S3SRC bit */
#define I2S3SRC_BitNumber 0x12
#define CFGR2_I2S3SRC_BB (PERIPH_BB_BASE + (CFGR2_OFFSET * 32) + (I2S3SRC_BitNumber * 4))
#endif /* STM32F10X_CL */
/* ---------------------- RCC registers bit mask ------------------------ */
/* CR register bit mask */
#define CR_HSEBYP_Reset ((uint32_t)0xFFFBFFFF)
#define CR_HSEBYP_Set ((uint32_t)0x00040000)
#define CR_HSEON_Reset ((uint32_t)0xFFFEFFFF)
#define CR_HSEON_Set ((uint32_t)0x00010000)
#define CR_HSITRIM_Mask ((uint32_t)0xFFFFFF07)
/* CFGR register bit mask */
#if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL) || defined (STM32F10X_CL)
#define CFGR_PLL_Mask ((uint32_t)0xFFC2FFFF)
#else
#define CFGR_PLL_Mask ((uint32_t)0xFFC0FFFF)
#endif /* STM32F10X_CL */
#define CFGR_PLLMull_Mask ((uint32_t)0x003C0000)
#define CFGR_PLLSRC_Mask ((uint32_t)0x00010000)
#define CFGR_PLLXTPRE_Mask ((uint32_t)0x00020000)
#define CFGR_SWS_Mask ((uint32_t)0x0000000C)
#define CFGR_SW_Mask ((uint32_t)0xFFFFFFFC)
#define CFGR_HPRE_Reset_Mask ((uint32_t)0xFFFFFF0F)
#define CFGR_HPRE_Set_Mask ((uint32_t)0x000000F0)
#define CFGR_PPRE1_Reset_Mask ((uint32_t)0xFFFFF8FF)
#define CFGR_PPRE1_Set_Mask ((uint32_t)0x00000700)
#define CFGR_PPRE2_Reset_Mask ((uint32_t)0xFFFFC7FF)
#define CFGR_PPRE2_Set_Mask ((uint32_t)0x00003800)
#define CFGR_ADCPRE_Reset_Mask ((uint32_t)0xFFFF3FFF)
#define CFGR_ADCPRE_Set_Mask ((uint32_t)0x0000C000)
/* CSR register bit mask */
#define CSR_RMVF_Set ((uint32_t)0x01000000)
#if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL) || defined (STM32F10X_CL)
/* CFGR2 register bit mask */
#define CFGR2_PREDIV1SRC ((uint32_t)0x00010000)
#define CFGR2_PREDIV1 ((uint32_t)0x0000000F)
#endif
#ifdef STM32F10X_CL
#define CFGR2_PREDIV2 ((uint32_t)0x000000F0)
#define CFGR2_PLL2MUL ((uint32_t)0x00000F00)
#define CFGR2_PLL3MUL ((uint32_t)0x0000F000)
#endif /* STM32F10X_CL */
/* RCC Flag Mask */
#define FLAG_Mask ((uint8_t)0x1F)
/* CIR register byte 2 (Bits[15:8]) base address */
#define CIR_BYTE2_ADDRESS ((uint32_t)0x40021009)
/* CIR register byte 3 (Bits[23:16]) base address */
#define CIR_BYTE3_ADDRESS ((uint32_t)0x4002100A)
/* CFGR register byte 4 (Bits[31:24]) base address */
#define CFGR_BYTE4_ADDRESS ((uint32_t)0x40021007)
/* BDCR register base address */
#define BDCR_ADDRESS (PERIPH_BASE + BDCR_OFFSET)
/**
* @}
*/
/** @defgroup RCC_Private_Macros
* @{
*/
/**
* @}
*/
/** @defgroup RCC_Private_Variables
* @{
*/
static __I uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9};
static __I uint8_t ADCPrescTable[4] = {2, 4, 6, 8};
/**
* @}
*/
/** @defgroup RCC_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @defgroup RCC_Private_Functions
* @{
*/
/**
* @brief Resets the RCC clock configuration to the default reset state.
* @param None
* @retval None
*/
void RCC_DeInit(void)
{
/* Set HSION bit */
RCC->CR |= (uint32_t)0x00000001;
/* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */
#ifndef STM32F10X_CL
RCC->CFGR &= (uint32_t)0xF8FF0000;
#else
RCC->CFGR &= (uint32_t)0xF0FF0000;
#endif /* STM32F10X_CL */
/* Reset HSEON, CSSON and PLLON bits */
RCC->CR &= (uint32_t)0xFEF6FFFF;
/* Reset HSEBYP bit */
RCC->CR &= (uint32_t)0xFFFBFFFF;
/* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */
RCC->CFGR &= (uint32_t)0xFF80FFFF;
#ifdef STM32F10X_CL
/* Reset PLL2ON and PLL3ON bits */
RCC->CR &= (uint32_t)0xEBFFFFFF;
/* Disable all interrupts and clear pending bits */
RCC->CIR = 0x00FF0000;
/* Reset CFGR2 register */
RCC->CFGR2 = 0x00000000;
#elif defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL)
/* Disable all interrupts and clear pending bits */
RCC->CIR = 0x009F0000;
/* Reset CFGR2 register */
RCC->CFGR2 = 0x00000000;
#else
/* Disable all interrupts and clear pending bits */
RCC->CIR = 0x009F0000;
#endif /* STM32F10X_CL */
}
/**
* @brief Configures the External High Speed oscillator (HSE).
* @note HSE can not be stopped if it is used directly or through the PLL as system clock.
* @param RCC_HSE: specifies the new state of the HSE.
* This parameter can be one of the following values:
* @arg RCC_HSE_OFF: HSE oscillator OFF
* @arg RCC_HSE_ON: HSE oscillator ON
* @arg RCC_HSE_Bypass: HSE oscillator bypassed with external clock
* @retval None
*/
void RCC_HSEConfig(uint32_t RCC_HSE)
{
/* Check the parameters */
assert_param(IS_RCC_HSE(RCC_HSE));
/* Reset HSEON and HSEBYP bits before configuring the HSE ------------------*/
/* Reset HSEON bit */
RCC->CR &= CR_HSEON_Reset;
/* Reset HSEBYP bit */
RCC->CR &= CR_HSEBYP_Reset;
/* Configure HSE (RCC_HSE_OFF is already covered by the code section above) */
switch(RCC_HSE)
{
case RCC_HSE_ON:
/* Set HSEON bit */
RCC->CR |= CR_HSEON_Set;
break;
case RCC_HSE_Bypass:
/* Set HSEBYP and HSEON bits */
RCC->CR |= CR_HSEBYP_Set | CR_HSEON_Set;
break;
default:
break;
}
}
/**
* @brief Waits for HSE start-up.
* @param None
* @retval An ErrorStatus enumuration value:
* - SUCCESS: HSE oscillator is stable and ready to use
* - ERROR: HSE oscillator not yet ready
*/
ErrorStatus RCC_WaitForHSEStartUp(void)
{
__IO uint32_t StartUpCounter = 0;
ErrorStatus status = ERROR;
FlagStatus HSEStatus = RESET;
/* Wait till HSE is ready and if Time out is reached exit */
do
{
HSEStatus = RCC_GetFlagStatus(RCC_FLAG_HSERDY);
StartUpCounter++;
} while((StartUpCounter != HSE_STARTUP_TIMEOUT) && (HSEStatus == RESET));
if (RCC_GetFlagStatus(RCC_FLAG_HSERDY) != RESET)
{
status = SUCCESS;
}
else
{
status = ERROR;
}
return (status);
}
/**
* @brief Adjusts the Internal High Speed oscillator (HSI) calibration value.
* @param HSICalibrationValue: specifies the calibration trimming value.
* This parameter must be a number between 0 and 0x1F.
* @retval None
*/
void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_CALIBRATION_VALUE(HSICalibrationValue));
tmpreg = RCC->CR;
/* Clear HSITRIM[4:0] bits */
tmpreg &= CR_HSITRIM_Mask;
/* Set the HSITRIM[4:0] bits according to HSICalibrationValue value */
tmpreg |= (uint32_t)HSICalibrationValue << 3;
/* Store the new value */
RCC->CR = tmpreg;
}
/**
* @brief Enables or disables the Internal High Speed oscillator (HSI).
* @note HSI can not be stopped if it is used directly or through the PLL as system clock.
* @param NewState: new state of the HSI. This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_HSICmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_HSION_BB = (uint32_t)NewState;
}
/**
* @brief Configures the PLL clock source and multiplication factor.
* @note This function must be used only when the PLL is disabled.
* @param RCC_PLLSource: specifies the PLL entry clock source.
* For @b STM32_Connectivity_line_devices or @b STM32_Value_line_devices,
* this parameter can be one of the following values:
* @arg RCC_PLLSource_HSI_Div2: HSI oscillator clock divided by 2 selected as PLL clock entry
* @arg RCC_PLLSource_PREDIV1: PREDIV1 clock selected as PLL clock entry
* For @b other_STM32_devices, this parameter can be one of the following values:
* @arg RCC_PLLSource_HSI_Div2: HSI oscillator clock divided by 2 selected as PLL clock entry
* @arg RCC_PLLSource_HSE_Div1: HSE oscillator clock selected as PLL clock entry
* @arg RCC_PLLSource_HSE_Div2: HSE oscillator clock divided by 2 selected as PLL clock entry
* @param RCC_PLLMul: specifies the PLL multiplication factor.
* For @b STM32_Connectivity_line_devices, this parameter can be RCC_PLLMul_x where x:{[4,9], 6_5}
* For @b other_STM32_devices, this parameter can be RCC_PLLMul_x where x:[2,16]
* @retval None
*/
void RCC_PLLConfig(uint32_t RCC_PLLSource, uint32_t RCC_PLLMul)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_PLL_SOURCE(RCC_PLLSource));
assert_param(IS_RCC_PLL_MUL(RCC_PLLMul));
tmpreg = RCC->CFGR;
/* Clear PLLSRC, PLLXTPRE and PLLMUL[3:0] bits */
tmpreg &= CFGR_PLL_Mask;
/* Set the PLL configuration bits */
tmpreg |= RCC_PLLSource | RCC_PLLMul;
/* Store the new value */
RCC->CFGR = tmpreg;
}
/**
* @brief Enables or disables the PLL.
* @note The PLL can not be disabled if it is used as system clock.
* @param NewState: new state of the PLL. This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_PLLCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_PLLON_BB = (uint32_t)NewState;
}
#if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL) || defined (STM32F10X_CL)
/**
* @brief Configures the PREDIV1 division factor.
* @note
* - This function must be used only when the PLL is disabled.
* - This function applies only to STM32 Connectivity line and Value line
* devices.
* @param RCC_PREDIV1_Source: specifies the PREDIV1 clock source.
* This parameter can be one of the following values:
* @arg RCC_PREDIV1_Source_HSE: HSE selected as PREDIV1 clock
* @arg RCC_PREDIV1_Source_PLL2: PLL2 selected as PREDIV1 clock
* @note
* For @b STM32_Value_line_devices this parameter is always RCC_PREDIV1_Source_HSE
* @param RCC_PREDIV1_Div: specifies the PREDIV1 clock division factor.
* This parameter can be RCC_PREDIV1_Divx where x:[1,16]
* @retval None
*/
void RCC_PREDIV1Config(uint32_t RCC_PREDIV1_Source, uint32_t RCC_PREDIV1_Div)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_PREDIV1_SOURCE(RCC_PREDIV1_Source));
assert_param(IS_RCC_PREDIV1(RCC_PREDIV1_Div));
tmpreg = RCC->CFGR2;
/* Clear PREDIV1[3:0] and PREDIV1SRC bits */
tmpreg &= ~(CFGR2_PREDIV1 | CFGR2_PREDIV1SRC);
/* Set the PREDIV1 clock source and division factor */
tmpreg |= RCC_PREDIV1_Source | RCC_PREDIV1_Div ;
/* Store the new value */
RCC->CFGR2 = tmpreg;
}
#endif
#ifdef STM32F10X_CL
/**
* @brief Configures the PREDIV2 division factor.
* @note
* - This function must be used only when both PLL2 and PLL3 are disabled.
* - This function applies only to STM32 Connectivity line devices.
* @param RCC_PREDIV2_Div: specifies the PREDIV2 clock division factor.
* This parameter can be RCC_PREDIV2_Divx where x:[1,16]
* @retval None
*/
void RCC_PREDIV2Config(uint32_t RCC_PREDIV2_Div)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_PREDIV2(RCC_PREDIV2_Div));
tmpreg = RCC->CFGR2;
/* Clear PREDIV2[3:0] bits */
tmpreg &= ~CFGR2_PREDIV2;
/* Set the PREDIV2 division factor */
tmpreg |= RCC_PREDIV2_Div;
/* Store the new value */
RCC->CFGR2 = tmpreg;
}
/**
* @brief Configures the PLL2 multiplication factor.
* @note
* - This function must be used only when the PLL2 is disabled.
* - This function applies only to STM32 Connectivity line devices.
* @param RCC_PLL2Mul: specifies the PLL2 multiplication factor.
* This parameter can be RCC_PLL2Mul_x where x:{[8,14], 16, 20}
* @retval None
*/
void RCC_PLL2Config(uint32_t RCC_PLL2Mul)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_PLL2_MUL(RCC_PLL2Mul));
tmpreg = RCC->CFGR2;
/* Clear PLL2Mul[3:0] bits */
tmpreg &= ~CFGR2_PLL2MUL;
/* Set the PLL2 configuration bits */
tmpreg |= RCC_PLL2Mul;
/* Store the new value */
RCC->CFGR2 = tmpreg;
}
/**
* @brief Enables or disables the PLL2.
* @note
* - The PLL2 can not be disabled if it is used indirectly as system clock
* (i.e. it is used as PLL clock entry that is used as System clock).
* - This function applies only to STM32 Connectivity line devices.
* @param NewState: new state of the PLL2. This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_PLL2Cmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_PLL2ON_BB = (uint32_t)NewState;
}
/**
* @brief Configures the PLL3 multiplication factor.
* @note
* - This function must be used only when the PLL3 is disabled.
* - This function applies only to STM32 Connectivity line devices.
* @param RCC_PLL3Mul: specifies the PLL3 multiplication factor.
* This parameter can be RCC_PLL3Mul_x where x:{[8,14], 16, 20}
* @retval None
*/
void RCC_PLL3Config(uint32_t RCC_PLL3Mul)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_PLL3_MUL(RCC_PLL3Mul));
tmpreg = RCC->CFGR2;
/* Clear PLL3Mul[3:0] bits */
tmpreg &= ~CFGR2_PLL3MUL;
/* Set the PLL3 configuration bits */
tmpreg |= RCC_PLL3Mul;
/* Store the new value */
RCC->CFGR2 = tmpreg;
}
/**
* @brief Enables or disables the PLL3.
* @note This function applies only to STM32 Connectivity line devices.
* @param NewState: new state of the PLL3. This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_PLL3Cmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_PLL3ON_BB = (uint32_t)NewState;
}
#endif /* STM32F10X_CL */
/**
* @brief Configures the system clock (SYSCLK).
* @param RCC_SYSCLKSource: specifies the clock source used as system clock.
* This parameter can be one of the following values:
* @arg RCC_SYSCLKSource_HSI: HSI selected as system clock
* @arg RCC_SYSCLKSource_HSE: HSE selected as system clock
* @arg RCC_SYSCLKSource_PLLCLK: PLL selected as system clock
* @retval None
*/
void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_SYSCLK_SOURCE(RCC_SYSCLKSource));
tmpreg = RCC->CFGR;
/* Clear SW[1:0] bits */
tmpreg &= CFGR_SW_Mask;
/* Set SW[1:0] bits according to RCC_SYSCLKSource value */
tmpreg |= RCC_SYSCLKSource;
/* Store the new value */
RCC->CFGR = tmpreg;
}
/**
* @brief Returns the clock source used as system clock.
* @param None
* @retval The clock source used as system clock. The returned value can
* be one of the following:
* - 0x00: HSI used as system clock
* - 0x04: HSE used as system clock
* - 0x08: PLL used as system clock
*/
uint8_t RCC_GetSYSCLKSource(void)
{
return ((uint8_t)(RCC->CFGR & CFGR_SWS_Mask));
}
/**
* @brief Configures the AHB clock (HCLK).
* @param RCC_SYSCLK: defines the AHB clock divider. This clock is derived from
* the system clock (SYSCLK).
* This parameter can be one of the following values:
* @arg RCC_SYSCLK_Div1: AHB clock = SYSCLK
* @arg RCC_SYSCLK_Div2: AHB clock = SYSCLK/2
* @arg RCC_SYSCLK_Div4: AHB clock = SYSCLK/4
* @arg RCC_SYSCLK_Div8: AHB clock = SYSCLK/8
* @arg RCC_SYSCLK_Div16: AHB clock = SYSCLK/16
* @arg RCC_SYSCLK_Div64: AHB clock = SYSCLK/64
* @arg RCC_SYSCLK_Div128: AHB clock = SYSCLK/128
* @arg RCC_SYSCLK_Div256: AHB clock = SYSCLK/256
* @arg RCC_SYSCLK_Div512: AHB clock = SYSCLK/512
* @retval None
*/
void RCC_HCLKConfig(uint32_t RCC_SYSCLK)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_HCLK(RCC_SYSCLK));
tmpreg = RCC->CFGR;
/* Clear HPRE[3:0] bits */
tmpreg &= CFGR_HPRE_Reset_Mask;
/* Set HPRE[3:0] bits according to RCC_SYSCLK value */
tmpreg |= RCC_SYSCLK;
/* Store the new value */
RCC->CFGR = tmpreg;
}
/**
* @brief Configures the Low Speed APB clock (PCLK1).
* @param RCC_HCLK: defines the APB1 clock divider. This clock is derived from
* the AHB clock (HCLK).
* This parameter can be one of the following values:
* @arg RCC_HCLK_Div1: APB1 clock = HCLK
* @arg RCC_HCLK_Div2: APB1 clock = HCLK/2
* @arg RCC_HCLK_Div4: APB1 clock = HCLK/4
* @arg RCC_HCLK_Div8: APB1 clock = HCLK/8
* @arg RCC_HCLK_Div16: APB1 clock = HCLK/16
* @retval None
*/
void RCC_PCLK1Config(uint32_t RCC_HCLK)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_PCLK(RCC_HCLK));
tmpreg = RCC->CFGR;
/* Clear PPRE1[2:0] bits */
tmpreg &= CFGR_PPRE1_Reset_Mask;
/* Set PPRE1[2:0] bits according to RCC_HCLK value */
tmpreg |= RCC_HCLK;
/* Store the new value */
RCC->CFGR = tmpreg;
}
/**
* @brief Configures the High Speed APB clock (PCLK2).
* @param RCC_HCLK: defines the APB2 clock divider. This clock is derived from
* the AHB clock (HCLK).
* This parameter can be one of the following values:
* @arg RCC_HCLK_Div1: APB2 clock = HCLK
* @arg RCC_HCLK_Div2: APB2 clock = HCLK/2
* @arg RCC_HCLK_Div4: APB2 clock = HCLK/4
* @arg RCC_HCLK_Div8: APB2 clock = HCLK/8
* @arg RCC_HCLK_Div16: APB2 clock = HCLK/16
* @retval None
*/
void RCC_PCLK2Config(uint32_t RCC_HCLK)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_PCLK(RCC_HCLK));
tmpreg = RCC->CFGR;
/* Clear PPRE2[2:0] bits */
tmpreg &= CFGR_PPRE2_Reset_Mask;
/* Set PPRE2[2:0] bits according to RCC_HCLK value */
tmpreg |= RCC_HCLK << 3;
/* Store the new value */
RCC->CFGR = tmpreg;
}
/**
* @brief Enables or disables the specified RCC interrupts.
* @param RCC_IT: specifies the RCC interrupt sources to be enabled or disabled.
*
* For @b STM32_Connectivity_line_devices, this parameter can be any combination
* of the following values
* @arg RCC_IT_LSIRDY: LSI ready interrupt
* @arg RCC_IT_LSERDY: LSE ready interrupt
* @arg RCC_IT_HSIRDY: HSI ready interrupt
* @arg RCC_IT_HSERDY: HSE ready interrupt
* @arg RCC_IT_PLLRDY: PLL ready interrupt
* @arg RCC_IT_PLL2RDY: PLL2 ready interrupt
* @arg RCC_IT_PLL3RDY: PLL3 ready interrupt
*
* For @b other_STM32_devices, this parameter can be any combination of the
* following values
* @arg RCC_IT_LSIRDY: LSI ready interrupt
* @arg RCC_IT_LSERDY: LSE ready interrupt
* @arg RCC_IT_HSIRDY: HSI ready interrupt
* @arg RCC_IT_HSERDY: HSE ready interrupt
* @arg RCC_IT_PLLRDY: PLL ready interrupt
*
* @param NewState: new state of the specified RCC interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_IT(RCC_IT));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Perform Byte access to RCC_CIR bits to enable the selected interrupts */
*(__IO uint8_t *) CIR_BYTE2_ADDRESS |= RCC_IT;
}
else
{
/* Perform Byte access to RCC_CIR bits to disable the selected interrupts */
*(__IO uint8_t *) CIR_BYTE2_ADDRESS &= (uint8_t)~RCC_IT;
}
}
#ifndef STM32F10X_CL
/**
* @brief Configures the USB clock (USBCLK).
* @param RCC_USBCLKSource: specifies the USB clock source. This clock is
* derived from the PLL output.
* This parameter can be one of the following values:
* @arg RCC_USBCLKSource_PLLCLK_1Div5: PLL clock divided by 1,5 selected as USB
* clock source
* @arg RCC_USBCLKSource_PLLCLK_Div1: PLL clock selected as USB clock source
* @retval None
*/
void RCC_USBCLKConfig(uint32_t RCC_USBCLKSource)
{
/* Check the parameters */
assert_param(IS_RCC_USBCLK_SOURCE(RCC_USBCLKSource));
*(__IO uint32_t *) CFGR_USBPRE_BB = RCC_USBCLKSource;
}
#else
/**
* @brief Configures the USB OTG FS clock (OTGFSCLK).
* This function applies only to STM32 Connectivity line devices.
* @param RCC_OTGFSCLKSource: specifies the USB OTG FS clock source.
* This clock is derived from the PLL output.
* This parameter can be one of the following values:
* @arg RCC_OTGFSCLKSource_PLLVCO_Div3: PLL VCO clock divided by 2 selected as USB OTG FS clock source
* @arg RCC_OTGFSCLKSource_PLLVCO_Div2: PLL VCO clock divided by 2 selected as USB OTG FS clock source
* @retval None
*/
void RCC_OTGFSCLKConfig(uint32_t RCC_OTGFSCLKSource)
{
/* Check the parameters */
assert_param(IS_RCC_OTGFSCLK_SOURCE(RCC_OTGFSCLKSource));
*(__IO uint32_t *) CFGR_OTGFSPRE_BB = RCC_OTGFSCLKSource;
}
#endif /* STM32F10X_CL */
/**
* @brief Configures the ADC clock (ADCCLK).
* @param RCC_PCLK2: defines the ADC clock divider. This clock is derived from
* the APB2 clock (PCLK2).
* This parameter can be one of the following values:
* @arg RCC_PCLK2_Div2: ADC clock = PCLK2/2
* @arg RCC_PCLK2_Div4: ADC clock = PCLK2/4
* @arg RCC_PCLK2_Div6: ADC clock = PCLK2/6
* @arg RCC_PCLK2_Div8: ADC clock = PCLK2/8
* @retval None
*/
void RCC_ADCCLKConfig(uint32_t RCC_PCLK2)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_ADCCLK(RCC_PCLK2));
tmpreg = RCC->CFGR;
/* Clear ADCPRE[1:0] bits */
tmpreg &= CFGR_ADCPRE_Reset_Mask;
/* Set ADCPRE[1:0] bits according to RCC_PCLK2 value */
tmpreg |= RCC_PCLK2;
/* Store the new value */
RCC->CFGR = tmpreg;
}
#ifdef STM32F10X_CL
/**
* @brief Configures the I2S2 clock source(I2S2CLK).
* @note
* - This function must be called before enabling I2S2 APB clock.
* - This function applies only to STM32 Connectivity line devices.
* @param RCC_I2S2CLKSource: specifies the I2S2 clock source.
* This parameter can be one of the following values:
* @arg RCC_I2S2CLKSource_SYSCLK: system clock selected as I2S2 clock entry
* @arg RCC_I2S2CLKSource_PLL3_VCO: PLL3 VCO clock selected as I2S2 clock entry
* @retval None
*/
void RCC_I2S2CLKConfig(uint32_t RCC_I2S2CLKSource)
{
/* Check the parameters */
assert_param(IS_RCC_I2S2CLK_SOURCE(RCC_I2S2CLKSource));
*(__IO uint32_t *) CFGR2_I2S2SRC_BB = RCC_I2S2CLKSource;
}
/**
* @brief Configures the I2S3 clock source(I2S2CLK).
* @note
* - This function must be called before enabling I2S3 APB clock.
* - This function applies only to STM32 Connectivity line devices.
* @param RCC_I2S3CLKSource: specifies the I2S3 clock source.
* This parameter can be one of the following values:
* @arg RCC_I2S3CLKSource_SYSCLK: system clock selected as I2S3 clock entry
* @arg RCC_I2S3CLKSource_PLL3_VCO: PLL3 VCO clock selected as I2S3 clock entry
* @retval None
*/
void RCC_I2S3CLKConfig(uint32_t RCC_I2S3CLKSource)
{
/* Check the parameters */
assert_param(IS_RCC_I2S3CLK_SOURCE(RCC_I2S3CLKSource));
*(__IO uint32_t *) CFGR2_I2S3SRC_BB = RCC_I2S3CLKSource;
}
#endif /* STM32F10X_CL */
/**
* @brief Configures the External Low Speed oscillator (LSE).
* @param RCC_LSE: specifies the new state of the LSE.
* This parameter can be one of the following values:
* @arg RCC_LSE_OFF: LSE oscillator OFF
* @arg RCC_LSE_ON: LSE oscillator ON
* @arg RCC_LSE_Bypass: LSE oscillator bypassed with external clock
* @retval None
*/
void RCC_LSEConfig(uint8_t RCC_LSE)
{
/* Check the parameters */
assert_param(IS_RCC_LSE(RCC_LSE));
/* Reset LSEON and LSEBYP bits before configuring the LSE ------------------*/
/* Reset LSEON bit */
*(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_OFF;
/* Reset LSEBYP bit */
*(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_OFF;
/* Configure LSE (RCC_LSE_OFF is already covered by the code section above) */
switch(RCC_LSE)
{
case RCC_LSE_ON:
/* Set LSEON bit */
*(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_ON;
break;
case RCC_LSE_Bypass:
/* Set LSEBYP and LSEON bits */
*(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_Bypass | RCC_LSE_ON;
break;
default:
break;
}
}
/**
* @brief Enables or disables the Internal Low Speed oscillator (LSI).
* @note LSI can not be disabled if the IWDG is running.
* @param NewState: new state of the LSI. This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_LSICmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CSR_LSION_BB = (uint32_t)NewState;
}
/**
* @brief Configures the RTC clock (RTCCLK).
* @note Once the RTC clock is selected it can't be changed unless the Backup domain is reset.
* @param RCC_RTCCLKSource: specifies the RTC clock source.
* This parameter can be one of the following values:
* @arg RCC_RTCCLKSource_LSE: LSE selected as RTC clock
* @arg RCC_RTCCLKSource_LSI: LSI selected as RTC clock
* @arg RCC_RTCCLKSource_HSE_Div128: HSE clock divided by 128 selected as RTC clock
* @retval None
*/
void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource)
{
/* Check the parameters */
assert_param(IS_RCC_RTCCLK_SOURCE(RCC_RTCCLKSource));
/* Select the RTC clock source */
RCC->BDCR |= RCC_RTCCLKSource;
}
/**
* @brief Enables or disables the RTC clock.
* @note This function must be used only after the RTC clock was selected using the RCC_RTCCLKConfig function.
* @param NewState: new state of the RTC clock. This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_RTCCLKCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) BDCR_RTCEN_BB = (uint32_t)NewState;
}
/**
* @brief Returns the frequencies of different on chip clocks.
* @param RCC_Clocks: pointer to a RCC_ClocksTypeDef structure which will hold
* the clocks frequencies.
* @note The result of this function could be not correct when using
* fractional value for HSE crystal.
* @retval None
*/
void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks)
{
uint32_t tmp = 0, pllmull = 0, pllsource = 0, presc = 0;
#ifdef STM32F10X_CL
uint32_t prediv1source = 0, prediv1factor = 0, prediv2factor = 0, pll2mull = 0;
#endif /* STM32F10X_CL */
#if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL)
uint32_t prediv1factor = 0;
#endif
/* Get SYSCLK source -------------------------------------------------------*/
tmp = RCC->CFGR & CFGR_SWS_Mask;
switch (tmp)
{
case 0x00: /* HSI used as system clock */
RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
break;
case 0x04: /* HSE used as system clock */
RCC_Clocks->SYSCLK_Frequency = HSE_VALUE;
break;
case 0x08: /* PLL used as system clock */
/* Get PLL clock source and multiplication factor ----------------------*/
pllmull = RCC->CFGR & CFGR_PLLMull_Mask;
pllsource = RCC->CFGR & CFGR_PLLSRC_Mask;
#ifndef STM32F10X_CL
pllmull = ( pllmull >> 18) + 2;
if (pllsource == 0x00)
{/* HSI oscillator clock divided by 2 selected as PLL clock entry */
RCC_Clocks->SYSCLK_Frequency = (HSI_VALUE >> 1) * pllmull;
}
else
{
#if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL)
prediv1factor = (RCC->CFGR2 & CFGR2_PREDIV1) + 1;
/* HSE oscillator clock selected as PREDIV1 clock entry */
RCC_Clocks->SYSCLK_Frequency = (HSE_VALUE / prediv1factor) * pllmull;
#else
/* HSE selected as PLL clock entry */
if ((RCC->CFGR & CFGR_PLLXTPRE_Mask) != (uint32_t)RESET)
{/* HSE oscillator clock divided by 2 */
RCC_Clocks->SYSCLK_Frequency = (HSE_VALUE >> 1) * pllmull;
}
else
{
RCC_Clocks->SYSCLK_Frequency = HSE_VALUE * pllmull;
}
#endif
}
#else
pllmull = pllmull >> 18;
if (pllmull != 0x0D)
{
pllmull += 2;
}
else
{ /* PLL multiplication factor = PLL input clock * 6.5 */
pllmull = 13 / 2;
}
if (pllsource == 0x00)
{/* HSI oscillator clock divided by 2 selected as PLL clock entry */
RCC_Clocks->SYSCLK_Frequency = (HSI_VALUE >> 1) * pllmull;
}
else
{/* PREDIV1 selected as PLL clock entry */
/* Get PREDIV1 clock source and division factor */
prediv1source = RCC->CFGR2 & CFGR2_PREDIV1SRC;
prediv1factor = (RCC->CFGR2 & CFGR2_PREDIV1) + 1;
if (prediv1source == 0)
{ /* HSE oscillator clock selected as PREDIV1 clock entry */
RCC_Clocks->SYSCLK_Frequency = (HSE_VALUE / prediv1factor) * pllmull;
}
else
{/* PLL2 clock selected as PREDIV1 clock entry */
/* Get PREDIV2 division factor and PLL2 multiplication factor */
prediv2factor = ((RCC->CFGR2 & CFGR2_PREDIV2) >> 4) + 1;
pll2mull = ((RCC->CFGR2 & CFGR2_PLL2MUL) >> 8 ) + 2;
RCC_Clocks->SYSCLK_Frequency = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull;
}
}
#endif /* STM32F10X_CL */
break;
default:
RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
break;
}
/* Compute HCLK, PCLK1, PCLK2 and ADCCLK clocks frequencies ----------------*/
/* Get HCLK prescaler */
tmp = RCC->CFGR & CFGR_HPRE_Set_Mask;
tmp = tmp >> 4;
presc = APBAHBPrescTable[tmp];
/* HCLK clock frequency */
RCC_Clocks->HCLK_Frequency = RCC_Clocks->SYSCLK_Frequency >> presc;
/* Get PCLK1 prescaler */
tmp = RCC->CFGR & CFGR_PPRE1_Set_Mask;
tmp = tmp >> 8;
presc = APBAHBPrescTable[tmp];
/* PCLK1 clock frequency */
RCC_Clocks->PCLK1_Frequency = RCC_Clocks->HCLK_Frequency >> presc;
/* Get PCLK2 prescaler */
tmp = RCC->CFGR & CFGR_PPRE2_Set_Mask;
tmp = tmp >> 11;
presc = APBAHBPrescTable[tmp];
/* PCLK2 clock frequency */
RCC_Clocks->PCLK2_Frequency = RCC_Clocks->HCLK_Frequency >> presc;
/* Get ADCCLK prescaler */
tmp = RCC->CFGR & CFGR_ADCPRE_Set_Mask;
tmp = tmp >> 14;
presc = ADCPrescTable[tmp];
/* ADCCLK clock frequency */
RCC_Clocks->ADCCLK_Frequency = RCC_Clocks->PCLK2_Frequency / presc;
}
/**
* @brief Enables or disables the AHB peripheral clock.
* @param RCC_AHBPeriph: specifies the AHB peripheral to gates its clock.
*
* For @b STM32_Connectivity_line_devices, this parameter can be any combination
* of the following values:
* @arg RCC_AHBPeriph_DMA1
* @arg RCC_AHBPeriph_DMA2
* @arg RCC_AHBPeriph_SRAM
* @arg RCC_AHBPeriph_FLITF
* @arg RCC_AHBPeriph_CRC
* @arg RCC_AHBPeriph_OTG_FS
* @arg RCC_AHBPeriph_ETH_MAC
* @arg RCC_AHBPeriph_ETH_MAC_Tx
* @arg RCC_AHBPeriph_ETH_MAC_Rx
*
* For @b other_STM32_devices, this parameter can be any combination of the
* following values:
* @arg RCC_AHBPeriph_DMA1
* @arg RCC_AHBPeriph_DMA2
* @arg RCC_AHBPeriph_SRAM
* @arg RCC_AHBPeriph_FLITF
* @arg RCC_AHBPeriph_CRC
* @arg RCC_AHBPeriph_FSMC
* @arg RCC_AHBPeriph_SDIO
*
* @note SRAM and FLITF clock can be disabled only during sleep mode.
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_AHBPeriphClockCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_AHB_PERIPH(RCC_AHBPeriph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->AHBENR |= RCC_AHBPeriph;
}
else
{
RCC->AHBENR &= ~RCC_AHBPeriph;
}
}
/**
* @brief Enables or disables the High Speed APB (APB2) peripheral clock.
* @param RCC_APB2Periph: specifies the APB2 peripheral to gates its clock.
* This parameter can be any combination of the following values:
* @arg RCC_APB2Periph_AFIO, RCC_APB2Periph_GPIOA, RCC_APB2Periph_GPIOB,
* RCC_APB2Periph_GPIOC, RCC_APB2Periph_GPIOD, RCC_APB2Periph_GPIOE,
* RCC_APB2Periph_GPIOF, RCC_APB2Periph_GPIOG, RCC_APB2Periph_ADC1,
* RCC_APB2Periph_ADC2, RCC_APB2Periph_TIM1, RCC_APB2Periph_SPI1,
* RCC_APB2Periph_TIM8, RCC_APB2Periph_USART1, RCC_APB2Periph_ADC3,
* RCC_APB2Periph_TIM15, RCC_APB2Periph_TIM16, RCC_APB2Periph_TIM17,
* RCC_APB2Periph_TIM9, RCC_APB2Periph_TIM10, RCC_APB2Periph_TIM11
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB2ENR |= RCC_APB2Periph;
}
else
{
RCC->APB2ENR &= ~RCC_APB2Periph;
}
}
/**
* @brief Enables or disables the Low Speed APB (APB1) peripheral clock.
* @param RCC_APB1Periph: specifies the APB1 peripheral to gates its clock.
* This parameter can be any combination of the following values:
* @arg RCC_APB1Periph_TIM2, RCC_APB1Periph_TIM3, RCC_APB1Periph_TIM4,
* RCC_APB1Periph_TIM5, RCC_APB1Periph_TIM6, RCC_APB1Periph_TIM7,
* RCC_APB1Periph_WWDG, RCC_APB1Periph_SPI2, RCC_APB1Periph_SPI3,
* RCC_APB1Periph_USART2, RCC_APB1Periph_USART3, RCC_APB1Periph_USART4,
* RCC_APB1Periph_USART5, RCC_APB1Periph_I2C1, RCC_APB1Periph_I2C2,
* RCC_APB1Periph_USB, RCC_APB1Periph_CAN1, RCC_APB1Periph_BKP,
* RCC_APB1Periph_PWR, RCC_APB1Periph_DAC, RCC_APB1Periph_CEC,
* RCC_APB1Periph_TIM12, RCC_APB1Periph_TIM13, RCC_APB1Periph_TIM14
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB1ENR |= RCC_APB1Periph;
}
else
{
RCC->APB1ENR &= ~RCC_APB1Periph;
}
}
#ifdef STM32F10X_CL
/**
* @brief Forces or releases AHB peripheral reset.
* @note This function applies only to STM32 Connectivity line devices.
* @param RCC_AHBPeriph: specifies the AHB peripheral to reset.
* This parameter can be any combination of the following values:
* @arg RCC_AHBPeriph_OTG_FS
* @arg RCC_AHBPeriph_ETH_MAC
* @param NewState: new state of the specified peripheral reset.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_AHBPeriphResetCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_AHB_PERIPH_RESET(RCC_AHBPeriph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->AHBRSTR |= RCC_AHBPeriph;
}
else
{
RCC->AHBRSTR &= ~RCC_AHBPeriph;
}
}
#endif /* STM32F10X_CL */
/**
* @brief Forces or releases High Speed APB (APB2) peripheral reset.
* @param RCC_APB2Periph: specifies the APB2 peripheral to reset.
* This parameter can be any combination of the following values:
* @arg RCC_APB2Periph_AFIO, RCC_APB2Periph_GPIOA, RCC_APB2Periph_GPIOB,
* RCC_APB2Periph_GPIOC, RCC_APB2Periph_GPIOD, RCC_APB2Periph_GPIOE,
* RCC_APB2Periph_GPIOF, RCC_APB2Periph_GPIOG, RCC_APB2Periph_ADC1,
* RCC_APB2Periph_ADC2, RCC_APB2Periph_TIM1, RCC_APB2Periph_SPI1,
* RCC_APB2Periph_TIM8, RCC_APB2Periph_USART1, RCC_APB2Periph_ADC3,
* RCC_APB2Periph_TIM15, RCC_APB2Periph_TIM16, RCC_APB2Periph_TIM17,
* RCC_APB2Periph_TIM9, RCC_APB2Periph_TIM10, RCC_APB2Periph_TIM11
* @param NewState: new state of the specified peripheral reset.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB2RSTR |= RCC_APB2Periph;
}
else
{
RCC->APB2RSTR &= ~RCC_APB2Periph;
}
}
/**
* @brief Forces or releases Low Speed APB (APB1) peripheral reset.
* @param RCC_APB1Periph: specifies the APB1 peripheral to reset.
* This parameter can be any combination of the following values:
* @arg RCC_APB1Periph_TIM2, RCC_APB1Periph_TIM3, RCC_APB1Periph_TIM4,
* RCC_APB1Periph_TIM5, RCC_APB1Periph_TIM6, RCC_APB1Periph_TIM7,
* RCC_APB1Periph_WWDG, RCC_APB1Periph_SPI2, RCC_APB1Periph_SPI3,
* RCC_APB1Periph_USART2, RCC_APB1Periph_USART3, RCC_APB1Periph_USART4,
* RCC_APB1Periph_USART5, RCC_APB1Periph_I2C1, RCC_APB1Periph_I2C2,
* RCC_APB1Periph_USB, RCC_APB1Periph_CAN1, RCC_APB1Periph_BKP,
* RCC_APB1Periph_PWR, RCC_APB1Periph_DAC, RCC_APB1Periph_CEC,
* RCC_APB1Periph_TIM12, RCC_APB1Periph_TIM13, RCC_APB1Periph_TIM14
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB1RSTR |= RCC_APB1Periph;
}
else
{
RCC->APB1RSTR &= ~RCC_APB1Periph;
}
}
/**
* @brief Forces or releases the Backup domain reset.
* @param NewState: new state of the Backup domain reset.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_BackupResetCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) BDCR_BDRST_BB = (uint32_t)NewState;
}
/**
* @brief Enables or disables the Clock Security System.
* @param NewState: new state of the Clock Security System..
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_ClockSecuritySystemCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_CSSON_BB = (uint32_t)NewState;
}
/**
* @brief Selects the clock source to output on MCO pin.
* @param RCC_MCO: specifies the clock source to output.
*
* For @b STM32_Connectivity_line_devices, this parameter can be one of the
* following values:
* @arg RCC_MCO_NoClock: No clock selected
* @arg RCC_MCO_SYSCLK: System clock selected
* @arg RCC_MCO_HSI: HSI oscillator clock selected
* @arg RCC_MCO_HSE: HSE oscillator clock selected
* @arg RCC_MCO_PLLCLK_Div2: PLL clock divided by 2 selected
* @arg RCC_MCO_PLL2CLK: PLL2 clock selected
* @arg RCC_MCO_PLL3CLK_Div2: PLL3 clock divided by 2 selected
* @arg RCC_MCO_XT1: External 3-25 MHz oscillator clock selected
* @arg RCC_MCO_PLL3CLK: PLL3 clock selected
*
* For @b other_STM32_devices, this parameter can be one of the following values:
* @arg RCC_MCO_NoClock: No clock selected
* @arg RCC_MCO_SYSCLK: System clock selected
* @arg RCC_MCO_HSI: HSI oscillator clock selected
* @arg RCC_MCO_HSE: HSE oscillator clock selected
* @arg RCC_MCO_PLLCLK_Div2: PLL clock divided by 2 selected
*
* @retval None
*/
void RCC_MCOConfig(uint8_t RCC_MCO)
{
/* Check the parameters */
assert_param(IS_RCC_MCO(RCC_MCO));
/* Perform Byte access to MCO bits to select the MCO source */
*(__IO uint8_t *) CFGR_BYTE4_ADDRESS = RCC_MCO;
}
/**
* @brief Checks whether the specified RCC flag is set or not.
* @param RCC_FLAG: specifies the flag to check.
*
* For @b STM32_Connectivity_line_devices, this parameter can be one of the
* following values:
* @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready
* @arg RCC_FLAG_HSERDY: HSE oscillator clock ready
* @arg RCC_FLAG_PLLRDY: PLL clock ready
* @arg RCC_FLAG_PLL2RDY: PLL2 clock ready
* @arg RCC_FLAG_PLL3RDY: PLL3 clock ready
* @arg RCC_FLAG_LSERDY: LSE oscillator clock ready
* @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready
* @arg RCC_FLAG_PINRST: Pin reset
* @arg RCC_FLAG_PORRST: POR/PDR reset
* @arg RCC_FLAG_SFTRST: Software reset
* @arg RCC_FLAG_IWDGRST: Independent Watchdog reset
* @arg RCC_FLAG_WWDGRST: Window Watchdog reset
* @arg RCC_FLAG_LPWRRST: Low Power reset
*
* For @b other_STM32_devices, this parameter can be one of the following values:
* @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready
* @arg RCC_FLAG_HSERDY: HSE oscillator clock ready
* @arg RCC_FLAG_PLLRDY: PLL clock ready
* @arg RCC_FLAG_LSERDY: LSE oscillator clock ready
* @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready
* @arg RCC_FLAG_PINRST: Pin reset
* @arg RCC_FLAG_PORRST: POR/PDR reset
* @arg RCC_FLAG_SFTRST: Software reset
* @arg RCC_FLAG_IWDGRST: Independent Watchdog reset
* @arg RCC_FLAG_WWDGRST: Window Watchdog reset
* @arg RCC_FLAG_LPWRRST: Low Power reset
*
* @retval The new state of RCC_FLAG (SET or RESET).
*/
FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG)
{
uint32_t tmp = 0;
uint32_t statusreg = 0;
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_RCC_FLAG(RCC_FLAG));
/* Get the RCC register index */
tmp = RCC_FLAG >> 5;
if (tmp == 1) /* The flag to check is in CR register */
{
statusreg = RCC->CR;
}
else if (tmp == 2) /* The flag to check is in BDCR register */
{
statusreg = RCC->BDCR;
}
else /* The flag to check is in CSR register */
{
statusreg = RCC->CSR;
}
/* Get the flag position */
tmp = RCC_FLAG & FLAG_Mask;
if ((statusreg & ((uint32_t)1 << tmp)) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
/* Return the flag status */
return bitstatus;
}
/**
* @brief Clears the RCC reset flags.
* @note The reset flags are: RCC_FLAG_PINRST, RCC_FLAG_PORRST, RCC_FLAG_SFTRST,
* RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST, RCC_FLAG_LPWRRST
* @param None
* @retval None
*/
void RCC_ClearFlag(void)
{
/* Set RMVF bit to clear the reset flags */
RCC->CSR |= CSR_RMVF_Set;
}
/**
* @brief Checks whether the specified RCC interrupt has occurred or not.
* @param RCC_IT: specifies the RCC interrupt source to check.
*
* For @b STM32_Connectivity_line_devices, this parameter can be one of the
* following values:
* @arg RCC_IT_LSIRDY: LSI ready interrupt
* @arg RCC_IT_LSERDY: LSE ready interrupt
* @arg RCC_IT_HSIRDY: HSI ready interrupt
* @arg RCC_IT_HSERDY: HSE ready interrupt
* @arg RCC_IT_PLLRDY: PLL ready interrupt
* @arg RCC_IT_PLL2RDY: PLL2 ready interrupt
* @arg RCC_IT_PLL3RDY: PLL3 ready interrupt
* @arg RCC_IT_CSS: Clock Security System interrupt
*
* For @b other_STM32_devices, this parameter can be one of the following values:
* @arg RCC_IT_LSIRDY: LSI ready interrupt
* @arg RCC_IT_LSERDY: LSE ready interrupt
* @arg RCC_IT_HSIRDY: HSI ready interrupt
* @arg RCC_IT_HSERDY: HSE ready interrupt
* @arg RCC_IT_PLLRDY: PLL ready interrupt
* @arg RCC_IT_CSS: Clock Security System interrupt
*
* @retval The new state of RCC_IT (SET or RESET).
*/
ITStatus RCC_GetITStatus(uint8_t RCC_IT)
{
ITStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_RCC_GET_IT(RCC_IT));
/* Check the status of the specified RCC interrupt */
if ((RCC->CIR & RCC_IT) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
/* Return the RCC_IT status */
return bitstatus;
}
/**
* @brief Clears the RCC's interrupt pending bits.
* @param RCC_IT: specifies the interrupt pending bit to clear.
*
* For @b STM32_Connectivity_line_devices, this parameter can be any combination
* of the following values:
* @arg RCC_IT_LSIRDY: LSI ready interrupt
* @arg RCC_IT_LSERDY: LSE ready interrupt
* @arg RCC_IT_HSIRDY: HSI ready interrupt
* @arg RCC_IT_HSERDY: HSE ready interrupt
* @arg RCC_IT_PLLRDY: PLL ready interrupt
* @arg RCC_IT_PLL2RDY: PLL2 ready interrupt
* @arg RCC_IT_PLL3RDY: PLL3 ready interrupt
* @arg RCC_IT_CSS: Clock Security System interrupt
*
* For @b other_STM32_devices, this parameter can be any combination of the
* following values:
* @arg RCC_IT_LSIRDY: LSI ready interrupt
* @arg RCC_IT_LSERDY: LSE ready interrupt
* @arg RCC_IT_HSIRDY: HSI ready interrupt
* @arg RCC_IT_HSERDY: HSE ready interrupt
* @arg RCC_IT_PLLRDY: PLL ready interrupt
*
* @arg RCC_IT_CSS: Clock Security System interrupt
* @retval None
*/
void RCC_ClearITPendingBit(uint8_t RCC_IT)
{
/* Check the parameters */
assert_param(IS_RCC_CLEAR_IT(RCC_IT));
/* Perform Byte access to RCC_CIR[23:16] bits to clear the selected interrupt
pending bits */
*(__IO uint8_t *) CIR_BYTE3_ADDRESS = RCC_IT;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/